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Localization of coherent exciton transport in phase space
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We study numerically the dynamics of excitons on discrete rings in the presence of static disorder. Based on
continuous-time quantum walks we compute the time evolution of the Wigner function (WF) both for pure
diagonal (site) disorder, as well as for diagonal and off-diagonal (site and transfer) disorder. In both cases, large
disorder leads to localization and destroys the characteristic phase space patterns of the WF found in the

absence of disorder.
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I. INTRODUCTION

Ever since the emergence and development of quantum
mechanics, there has been a major interest in the crossover
from quantum mechanical transport to the corresponding
classical transport. However, there are far-reaching differ-
ences in the usual mathematical description of the two dif-
ferent processes. In classical physics, the phase space is
spanned by conjugate variables, such as position and mo-
mentum, whose time development leads to classical trans-
port. Quantum mechanical processes, on the contrary, take
place in Hilbert space. One approach to overcome these dif-
ferences was already presented in the early days of quantum
mechanics, more than 70 years ago, by Wigner [1,2]. He
introduced a function, now known as Wigner function (WF),
which is a (quasi) probability in a quantum mechanical phase
space spanned by position and momentum variables. The WF
is a real valued function and in this respect compares well
with the classical Boltzmann probability distribution in phase
space. However, it is not always positive. WFs and related
phase space functions, like the Husimi function, are widely
used in Quantum Optics [3,4] but also for describing elec-
tronic transport; see e.g. [5-7].

Apart from the quantum-classical crossover there are also
extremely interesting purely quantum mechanical phenom-
ena. For example, Anderson has shown that there is no quan-
tum diffusion for some random lattices [8—10], an effect
nowadays called (strong) localization, where the quantum
mechanical transport through the lattice is, in essence, pro-
hibited by the potential energy surface. Anderson’s hopping
model for electron transport has also turned out to be useful
in describing excitons in disordered systems, e.g., [11-15].

In fact, Anderson’s model is closely related to the so-
called continuous-time quantum walks (CTQWs) with disor-
der. Recently, it has been shown that the motion on a graph,
described by CTQWSs, can be exponentially suppressed by
the disorder [16]. Originally, (unperturbed) CTQWs were in-
troduced in the context of quantum information as the quan-
tum mechanical analog of continuous-time random walks
(CTRWSs) [17]. Here, the underlying, discrete connectivity of
the structure on which the transport takes place determines
the Hamiltonian. Since CTQW:s also model exciton transport
over various discrete structures [18], they are closely con-
nected to other approaches to study (coherent) exciton trans-
port phenomena on discrete graphs, for instance, in the con-
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texts of polymer [19], atomic [20] or solid-state [21] physics.

In this paper we consider the dynamics of excitons on
discrete rings under static disorder, focusing on a quantum
mechanical phase space approach. We compute the corre-
sponding WFs numerically and study the effects of both pure
diagonal (site) disorder, as well as of diagonal and off-
diagonal (site and transfer) disorder on the (coherent) trans-
port. The WFs are then compared to the unperturbed case,
for which an analytical treatment is possible [22].

The paper is organized as follows. In Sec. I we briefly
review how we model coherent exciton transport on graphs
and define the appropriate Hamiltonian for rings with two
types of disorder. After introducing the discrete WF in Sec.
III, we lay down the procedure of our calculations in Sec. IV.
The subsequent Secs. V to VII show the numerical results for
coherent exciton transport on rings with disorder. We close
with our conclusions.

II. COHERENT EXCITON DYNAMICS

In the absence of disorder, the (coherent) dynamics of
excitons on a graph of connected nodes is modelled by the
CTQW. Here, the CTQW is obtained by identifying the
Hamiltonian of the system with the (classical) transfer ma-
trix, H=-T, see e.g. [17] (we will set =1 in the follow-
ing). The transfer matrix of the walk, T=(7};), can be related
to the connectivity matrix A of the graph by T=-7yA, where
for simplicity we assume the transmission rates 7y of all
bonds to be equal. The matrix A has as nondiagonal elements
A, ; the values —1 if nodes / and j of the graph are connected
by a bond and O otherwise. The diagonal elements A; ; of A
equal the number of bonds f; which exit from node ;.

Now, the states |j) associated with excitations localized at
the nodes j span the whole accessible Hilbert space to be
considered here. In general, the time evolution of a state |j)
starting at time #,=0 is given by |j;ty=exp(~iHz)|j).
By denoting the eigenstates of H by |®,) and the eigen-
values by E, the transition probability reads (1)

= (] exp(=iH1) | j)*=|Z gexp(=iEg){I| D)} Py| ).

A. Dynamics on rings without disorder

The unperturbed Hamiltonian for such a CTQW on a fi-
nite one-dimensional network of length N with periodic
boundary conditions (PBC) takes on the very simple form
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H|j)=2|j)-|j—1)—|j+1), where we have taken the trans-
mission rate to be y=1 and j=0,1,...,N—-1. The eigen-
states |<I>(;) of the time independent Schrodinger equation
H°|®Y)=EY| ®Y) are Bloch states, which can be expressed as
linear combinations of the states |j); see Refs. [22,23] for
details.

B. Dynamics on rings with disorder

Now we introduce (static) disorder by adding to the un-
perturbed Hamiltonian H® a disorder operator A, i.e., by set-
ting H=H+A. We let the disorder matrix A=(A;;) have
nonzero entries only at the positions for which H;;# 0. For
different strengths of disorder, the elements A, ;=A; ; are cho-
sen randomly (drawn from a normal distribution with the
mean value zero and the variance one), which we multiply
by a factor of A, which then can take values from the interval
[0,1/2]. Note that under these assumptions for the (static)
disorder the connectivity of the graph is essentially un-
changed, i.e., there are no new connections created nor are
existing connections destroyed. Therefore, the only nonzero
matrix elements of H are those of the initial A. The action of
the new Hamiltonian H on a state |j) reads thus

H[j)=H+A)j)=2lj) - |j- 1)=|j+1)+24; 1))
A= =A i+ (D)

In the following we consider two cases of disorder.

(A) Diagonal disorder (DD), where A; ;# 0 and A, ;=0 for
[# j. We assign a random number to each A, ;, a procedure
which leads to N random numbers.

(B) Diagonal and off-diagonal disorder (DOD), where we
choose a random number for each A;; and for each A;;_;.
Thus, 2N random numbers are needed.

Introducing disorder into the system in this way has con-
sequences for the relation between the CTQWs and the
CTRWSs. In CTRWs the transition rates, given by the entries
of the transfer matrix T, are correlated, i.e., for each site the
sum of the nondiagonal rates for transmission from it and the
diagonal rate of leaving it are the same. In the cases consid-
ered here, a direct identification of the Hamiltonian H with a
classical transfer matrix T is, in general, not possible any-
more. However, the DOD and DD Hamiltonians are widely
used in quantum mechanical nearest-neighbor hopping mod-
els, to which also the CTQWs belong. Furthermore, we still
consider transport processes on graphs which have the con-
nectivity matrix A, but the direct connection between H and
T is lost. Of course, one can maintain this connection by
imposing constraints on the A, e.g., by requiring that 24,

=A; ;1 +4, ;4 for all j.

III. WIGNER FUNCTIONS

The WF is a quasiprobability (in the sense that it can
become negative) in the quantum mechanical phase space.
For a phase space spanned by the continuous variables X and
K, the WF reads [1-3]
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where p(f) is the density operator. In the following we only
consider pure states, i.e., p()=|j;){j;z|. Note that the WF is
normalized to one when integrated over the whole phase
space.

For a discrete system having N sites on a ring, where we
choose to enumerate the sites as 0,1,...,N=1, {(x|j;f) is
only defined for integer values of x=0,1,...,N—1, and the
form of Eq. (2) has to be changed from an integral to a sum.
Now the WF resembles a discrete Fourier transform, which
requires N different k values. These k values may evidently
be chosen as k=2mk/N, again having k=0,1,...,N-1. Ac-
cording to [22] we use, for integer x and y, the following
discrete WF:

N-1
1<
Wilx, k50) = — 2 e®(x—y
. Ny:()

(st

x+y). (3)

The marginal distributions are now given by summing over
lines in phase space, e.g., we get

N-1 N-1 N-1

1 |
2 Wik =0 3 X TNy
k=0

k=0 y=0

(st

x+y)

N-1
= 5y,0<x -y
0

y=

7305t

X+ y)

= [(xljsn)f?
= m,,(0). (4)

We note here that there are forms similar to Eq. (3) in defin-
ing discrete WFs; see, e.g., Refs. [24-28].

In order to compare to the classical long time behavior,
we define a long time average of the WF by

_ 1 (7
Wi(x, k) = lim }f dt Wix, k;1). (5)

T—oo 0

As for the marginal distributions for the WF we obtain mar-
ginal distributions for W;(x, x) upon integration along lines
in (x,x) space. Especially, summing over «, =, W;(x,«)
= X.j» one obtains the long time average of the transition
probability , (7).

IV. WFS ON RINGS

A. WFs on rings without disorder

The unperturbed Hamiltonian for a CTQW on a ring is
given by HO; see Sec. IT A. In this case, the discrete WF can
be calculated analytically by using a Bloch ansatz. It is given
by [22]
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Wix, k;t) = v 2 exp[—i2m(2n + k)(x — j)/N]
n=0

Xexp{— i2t[cos(2m(k + n)/N) — cos(27n/N)]}.
(6)

As shown in Ref. [22], the marginal distributions of
Wi(x, k;t) and Wi(x, k) are correctly recovered.

B. WFs on rings with disorder

Under disorder the Bloch property is lost, then the previ-
ous analytic approach does not apply anymore. We hence
compute numerically the WFs for the corresponding quan-
tum dynamics of excitons on rings with disorder by using the
standard software package MATLAB. The differences in the
following computations are only due to the different Hamil-
tonians H, depending on the specific type of disorder.

Having the eigenstates |®,) and the eigenvalues E,, the
WEF is obtained by expanding Eq. (3) as

N-1
1 . .
W,(x, k1) = X,E}) ™ expl— i(Ey — Ept]
y= 9,!9’

X(x = y|@ g XDy [P N Dl +y).  (7)

Figure 1 shows the WF according to Eq. (7) for N=101
and two different realizations of H with A=1/2 at time ¢
=40. Clearly, the details of the WF differ much for different
realizations. However, a trend of the effect of disorder on the
dynamics is already visible: The disorder prevents the exci-
tation to travel freely through the graph. Instead, there is a
localized area about the initial site x=;=50. We will study
this in much more detail in the remainder.

There appear nonvanishing values of the WF at nodes
opposite to the initial node j, i.e., at x=j+N/2, even at
infinitesimal small times 7. These values are not related to
disorder but are due to the PBCs. This can be inferred from
Eq. (3). Consider first the case of even N: For =0 and x=j
the only contributions to the sum in Eq. (3) are those for
which y=0. However, for t=0 and also for x=j+N/2 the WF
does not vanish: There are nonzero contributions to the sum
for y=N/2, since we have (j|j){(j|j+Ny=(j|j)j|j)=1. Non-
zero values of the WF for x=j+N/2 continue to show up at
later times, see also [22]. The argumentation for odd N is
similar: Here, however, nonvanishing values at x=j+N/2
start to appear as soon as the wave function (x|;;z)spreads
over more than one node. The difference between these non-
vanishing WF values for even and for odd N at short times
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FIG. 1. (Color online) Snapshots of two real-
0 izations of the WF for N=101 and DOD with A
=1/2 at time t=40.

tends to zero as 1/N for N large. We remark that the appear-
ance of these nonvanishing WF values for short times at x
~j+N/2 does not lead to a finite transition probability
Tinn, (1), since at small ¢ the sum in Eq. (4) practically
vanishes. This is in line with the situation for open bound-
aries, where the transition probabilities 7,5/, (#) also vanish
at short times. There, however, also the WF values at x=j
+N/2 are practically zero at short times. A thorough study of
the influence of different boundary conditions on the WF is
beyond the scope of this paper and will be given elsewhere.

Once we have the WF, we also compute its long time
average. Now it is preferable not to first evaluate Eq. (7) and
to perform then the computationally expensive time integrals
of Eq. (5), but to proceed at first analytically, obtaining

— 1 -~
Wj(x’ K) = X,E e’k’E SEs—Ey)
y 0.0'

X = Y[ Do Dy [N PN Pelx+y),  (8)

with 8(E;—Ep)=1 if E)=E, and 8(Ey—E,;)=0 otherwise.
Equation (8) is in general much more accurate and compu-
tationally cheaper.

C. Ensemble averages

In order to have a global picture of the effect of disorder
on the dynamics, we will consider ensemble averages of the
WFs. For this we calculate the WF for different realizations
of H and average over all realizations, i.e., for R realizations
we compute

R
1
<Wj(-x7K;t)>R = EE [Wj(-x9K;t)]r$ (9)
r=1

where [W(x, k;1)], is the WF of the rth realization of H.

V. THE ROLE OF DISORDER

For all cases of disorder, we study the WF for different
strength of the disorder, i.e., for different A with A ranging
from A=1/40 to A=1/2. We exemplify our results for odd
(N=101) and even (N=100) numbered rings, where in all
cases the initial condition (=0) is a state localized at node j
(in our two examples j=50). Note that the WF of a localized
state at x=j is equipartitioned in the « direction, i.e.,
W;(j, x;0)=1/N.

A. Diagonal disorder

We start by considering diagonal disorder (DD) for a
graph with N=101. Figure 2 shows snapshots of
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(W;(x,k:1))g for different values of A at different times.

The first column shows (W;(x, «;1))g for A=1/40 at times
t=1,10,20,40,100, and 500 [Figs. 2(1a)-2(1f)]. For this
quite weak disorder, the patterns in phase space are similar to
the unperturbed case, where “waves” in phase space emanate
from the initial site x=;j=50 and start to interfere after hav-
ing reached the opposite site of the ring (see Fig. 3 of [22]).
However, at longer times differences become visible; see
Fig. 2(1f). The pattern for the unperturbed case is quite ir-
regular but with alternating positive and negative regions of
the WF of approximately the same magnitude. Here, the dis-
order causes a decrease of (W,(x,«:1))x for x close to the
initial site j=50 and « values in the middle of the interval
[0,N—1] compared to the values of « close to 0 or N—1.

Increasing the disorder parameter A, the patterns change
profoundly. The wave structure gets suppressed and for all
a localized region forms about the initial site j=50 already
for small disorder (A=1/10) and short times (r=20); see Fig.
2(2¢).

For even larger values of A, for all x the formation of a
localized region about j=50 becomes even more pro-
nounced. Already for A=1/4 this localized region forms for

X

times as short as t=10; see Fig. 2(3b). At A=1/2,
(W,(x,k:1))g stays localized for all times [Fig. 2(4a)-2(4f)].
Also here, values of the WF at about k= N/2 are decreased,
whereas values of the WF for  about the interval borders 0
and N-1 remain rather large for x=j, as indicated by the
thin black region (see also the arrows), e.g., in Fig. 2(4f). We
further note that at high disorder the localized averaged WF
is always positive, i.e., all fluctuations, present for small dis-
order, have vanished. We recall that the WF is normalized to
one when integrated over the whole phase space.

Having an even number of nodes in the graph does not
alter the picture drastically. By comparing Fig. 2 to Fig. 3,
which shows the quantum dynamics on a ring of N=100
nodes with DD, one sees that the corresponding panels are
rather similar; the localization effect of the disorder on the
system stays the same. However, there are also differences at
long times, compare (le), (1f), (2e), and (2f) in each figure.
Another difference between even and odd N lies in the fact
that for even N there remains a region of alternating values
of (W;(x,x;1))g at about x=j+N/2, even for large disorder;
see column (4a)—(4f). This is due to the periodic boundary
condition and, therefore, to the equal number of steps in both
directions starting from any site on the network needed to
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reach the opposite site of the network. Obviously, the disor-
der does not destroy this symmetry.

B. Diagonal and off-diagonal disorder

The second type of disorder is the diagonal and off-
diagonal one (DOD), where both the diagonal and the off-
diagonal elements of the unperturbed Hamiltonian are ran-
domly changed, as explained in Sec. II B. Figure 4 shows
(W;(x, k;1))g for the same values of 7, A, and R as in Fig. 2.
Here and as for DD, the symmetry with respect to the line in
phase space at x=;=50 remains intact. Comparing to the DD
case, there is a slightly weaker suppression of the waves in
phase space. This effect is rather small but can be seen by
comparing, e.g., the values of the WF in Fig. 2(2f) to the
ones in Fig. 4(2f); note the different corresponding colorbars.
However, the overall localization effect is very similar for
both types of disorder.

Another possibility is to constrain the disorder by having
2A;;=A;;_1+4, ;;;, which maintains the connection of H to
the classwal transfer matrix T. Figure 5 shows the WF evalu-
ated in this way for N=101 at time =500 and for A=1/40,

0 20 40 60 80

1/10, 1/4, and 1/2. Also here, the localization effect is
clearly seen. Nevertheless, the details of the WF differ from
those obtained for the other types of disorder.

VI. MARGINAL DISTRIBUTIONS

Integrating the WF along lines in phase space gives the
marginal distributions. Since we saw that the effect of local-
ization does not depend on the particular choice of the type
of disorder, we display the marginal distributions only for
DOD. Figure 6 shows the marginal distributions for N=101
at time =100 for different A. Obviously, the details of the
WF are lost when integrating along either the x or the «
direction.

While the transition probabilities, obtained by summing
over all « [Fig. 6(a)], clearly show the effect of localization,
this is not the case for the marginal distribution obtained by
summing over all x [Fig. 6(b)]. In the latter case, one cannot
readily distinguish the situations corresponding to different
values of A.
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VII. LONG TIME AVERAGES

In has been shown in [22] that for unperturbed coherent
exciton transport and odd N (superscript “o0”), most points in
the quantum mechanical phase space have a weight of 1/N?,
namely we have

1/N?, k+# 0 and any x,
W;-’(x,x)z I/N, k=0and x=j,
0’

(10)

elsewhere.

For even N, the limiting WF reads

@)

X
2/IN*, k# 0, k even and any x,
Wi(x,k)={ N, k=0andx=j.j+N/2, (11)
0, elsewhere.

We note that Eq. (11) differs from Eq. (19) of Ref. [22],
which is not correct. The long time averages of the WFs for
even N are somewhat peculiar, since values different from
zero appear only for even «, whereas the WFs themselves
have values different from zero at arbitrary times for all x. A
numerical check (which we do not include here) for a finite
line of N nodes without disorder, shows that these stripes in
the long time average in the present study are due to the
periodic boundaries. For even N there are constructive inter-

x10° FIG. 5. (Color online) Con-

@)

20 40 60 80 100 0 20 40 60 80 100 0 20 40 60
X X X

0

(4)

2 strained diagonal and off-diagonal
disorder; see text for details. Aver-
aged WF for N=101 and =500
[cases (f) in Figs. 2 to 4], but for

80 100 0 20 40 60 80 100

the same values of A and R as

X used in Fig. 2.
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FIG. 6. (Color online) DOD: Marginal distributions of

(W(x, k;0))g, for N=101 at t=100, for A=1/40,1/10,1/4, and
1/2. (a) Summing along the « direction; (b) summing along the x
direction.

ference patterns in the transition probabilities, since the num-
ber of steps in both directions is the same, see also Ref. [23].
For a finite line with even N, there are no stripes in the long
time average. Of course, for short times and close to the
initial node, the WFs for the line and the circle coincide,
since the boundaries have no effect on the initial propaga-
tion. Nevertheless, one also has to bear in mind that the long
time average is not a real equilibrium distribution.

As a technical note, we remark that changing the order of
the time and ensemble averages can lead to a considerable
speedup of the numerical computation. We checked numeri-
cally that the time average and the ensemble average indeed
interchange, i.e., we have

_ 1 (T
<W](X9K)>R = hm_f dt W](X,K,[)
T—)OCT 0 R

T
= lim%f AW (x, k31))g. (12)

T—oe 0

Now, using Eq. (8) reduces the computational effort further.
For computational reasons, we further interchanged the sum-
mation over y with the ensemble average, i.e.,

W= { 1S &S By~ Ey)x - y|0p XDy )
y 19,(9’

X (| N D glx + y)

R
= ]%]E eiky< > SEg—Eg)x—y| @y XD ylj)
y 0.0'
X<j|CI)0><CD0|x+y>> . (13)
R

Again, we carefully checked that Eq. (13) yields the same
result as Eq. (12).
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__FIG. 7. (Color online) DOD: Limiting averaged WF,
<Wj(x,K)>R, for N=101 and A=1/40, 1/10, 1/4, and 1/2 [panels
(1) to (4), respectively], according to Eq. (13).

Now, the disorder changes also the limiting WF quite
drastically. Starting from high disorder of A=1/2, we expect
from Figs. 2(4a)-2(4f) to 4(4a)-4(4f) that the long time av-
erage of the averaged WF will look basically the same. Fig-
ure 7 shows the limiting averaged WF for N=101 and DOD
according to Eq. (13). Indeed, for large A, the limiting aver-
aged WF is comparable to the corresponding averaged WF;
compare Figs. 7(4) and 4(4f). Close to the initial node x=j
=50 and there along the « direction, (W;(x, x))z has large
(positive) values for x about 0 and N—1 which decrease by
going toward k=N/2. Here, the minimum of this decrease
depends on the particular type of disorder.

Also for small A there are significant differences to the
case without disorder. From Fig. 7(1) we see that the disor-
der “smears out” the localized value W;(j,0)=1/N in the
case without disorder; see Eq. (10). Specifically, the (x
=j,k=0) value decreases while the neighboring ones in-
crease. For A=1/10, the onset of localization about x=j
=50 is already seen; see Fig. 7(2), and becomes more and
more pronounced as A increases; see Fig. 7(3). Furthermore,
all other values of (W,(x, «)) for x # j decrease with increas-
ing disorder, as can be seen by the decreasing size of the
light pink region, which corresponds to values close to 1/N?.
In fact, the values of the limiting averaged WF for x distant
from x=j=50 drop to zero, shown as white regions in Fig. 7.

For even N we found that without disorder the limiting
WF shows a peculiar “striped” distribution, caused by the
PBCs; see Eq. (11). By switching on the disorder, these pe-
culiarities vanish. Figure 8 shows the limiting averaged WF
for DOD and N=100. Although for small A there are some
remainders of stripes left, these disappear completely for
higher values of A; compare Figs. 8(1)-8(4). Note further
that the second peak of Wi(x,«) at x=j+N/2, see Eq. (11),
transforms for increasing disorder to an oscillatory line in the
k direction at x=j+N/2.

By summing now again along the « direction, this pecu-
liar behavior vanishes and also for even N we get a localized
marginal limiting probability distribution at x=j. Figure 9
shows the marginal distribution =,(W,(x, «))g for even and
odd N with DOD. As expected, for even N, Fig. 9(a), there
are no remainders of the peculiar distribution of (W;(x, x))g
at x=j+N/2 for large A. Furthermore, for high disorder, the
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FIG. 8. (Color online) Same as Fig. 7 but for N=100.

marginal distributions of (W(x, k))r have a shape similar to
that of (W(x, k,1))g; compare Figs. 6(a) and 9(b).

In general, the difference in the long time average
2 (W (x, k))g between even and odd N strongly depends on
the disorder. Without disorder, the two cases are distinct [22].
For odd N the constructive interference at the node j leads to
only one peak in =, (W,(x, «))g; see Eq. (20) in [22]. How-
ever, for even N the constructive interference at nodes j and
also at node j+N/2 leads to two peaks in X, (W;(x, k)); see
Eq. (21) in [22]. With increasing disorder, the second peak in
2 Wj(x, k))gfor even N at x=j+N/2 vanishes and gives rise
to only one peak at x=j; see Fig. 9. Nonetheless, for large
but finite N the WF itself [given in Eq. (3)] still allows us to
distinguish between the odd and the even case; see Figs. 7
and 8.

VIII. CONCLUSIONS

We have analyzed the effect of static disorder on the co-
herent exciton transport by means of discrete Wigner func-
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FIG. 9. (Color online) DOD: Marginal distribution

EK(Wj(x, k))g for different A and (a) N=100 and (b) N=101.

tions. We have studied numerically the dynamics on a ring of
N sites in the presence of pure diagonal disorder and also of
diagonal and off-diagonal disorder. The previously found
characteristic patterns of the unperturbed WF in the quantum
mechanical phase space are destroyed by the disorder. In-
stead, the WF shows strong localization about the initial
node. Integrating out the details of the time evolution by
considering the long time average of the WF, shows an even
more pronounced localization.
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